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Delay Considerations for Opportunistic Scheduling
in Broadcast Fading Channels

Masoud Sharif and Babak Hassibi

Abstract— We consider a single-antenna broadcast block fad-
ing channel with n users where the transmission is packet-
based. We define the (packet) delay as the minimum number
of channel uses that guarantees all n users successfully receive
m packets. This is a more stringent notion of delay than average
delay and is the worst case (access) delay among the users. A
delay optimal scheduling scheme, such as round-robin, achieves
the delay of mn. For the opportunistic scheduling (which is
throughput optimal) where the transmitter sends the packet to
the user with the best channel conditions at each channel use,
we derive the mean and variance of the delay for any m and n.
For large n and in a homogeneous network, it is proved that the
expected delay in receiving one packet by all the receivers scales
as n log n, as opposed to n for the round-robin scheduling. We
also show that when m grows faster than (log n)r , for some r > 1,
then the delay scales as mn. This roughly determines the time-
scale required for the system to behave fairly in a homogeneous
network. We then propose a scheme to significantly reduce the
delay at the expense of a small throughput hit. We further look
into the advantage of multiple transmit antennas on the delay.
For a system with M antennas in the transmitter where at each
channel use packets are sent to M different users, we obtain the
expected delay in receiving one packet by all the users.

Index Terms— Broadcast channel, fading, opportunistic
scheduling, packet delay, longest queue.

I. INTRODUCTION

RESOURCE allocation in wireless systems aims for two
conflicting goals, firstly providing quality of service such

as delay and fairness to users, and secondly maximizing the
throughput of the system. A fundamental property of wireless
channels is their time variation due to multi-path effects and
the mobility of the users. This implies that at each channel use
some users have favorable channel conditions and other users
incur deep fades. In fact, assuming a block fading model for
the channel and having full CSI in the transmitter, it can be
shown that sending to the user with the best channel conditions
maximizes the sum rate (or throughput) of the single antenna
broadcast channel.
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In order to exploit this multiuser diversity, the base station
(or the transmitter) has to know the channel state information
(CSI) of all the users. In fact, this opportunistic way of
transmission has been proposed in Qualcomm’s High Data
Rate (HDR) system (1xEV-DO). Other variations of this
scheduling that do not require full CSI in the transmitter are
studied in [1], [2].

However, there is a price to pay for maximizing the
throughput which is fairness among users and delay in sending
packets. Assuming users have different signal to noise ratios,
the throughput optimal scheduling will provide much less
service to the user with the lowest signal to noise ratio (SNR)
compared to that of the user with the highest SNR. Even in
a homogeneous network where users have equal SNRs and
so the system is long-term fair, there is no delay guarantee
for transmitting a packet to a specific user as the transmission
is probabilistic, i.e., at each channel use each user will be
chosen with some probability. The other extreme would be
to use a round robin type scheduling that fairly gives service
to all users and can guarantee a fixed delay for transmitting a
packet to each user. In applications with delay constraints, one
may wonder how bad the worst case delay (or the delay for
the most unfortunate user) for the throughput optimal strategy
is.

In this paper, we consider a broadcast channel with n users
in which users’ messages are independent. The transmission is
packet based and the channel is assumed to be block Rayleigh
fading and changes independently from one block to the
other. We also assume packets are dropped if outage occurs,
i.e., the instantaneous capacity goes below the amount of
information in the packet. Given the probability of outage Pe,
we assume packets carry a fix amount of information C0 which
only depends on the scheduling. For example, opportunistic
scheduling is the one that maximizes the throughput given
Pe. This will be further discussed in Section 2.

We define the delay as the minimum number of transmis-
sions that guarantees all the users will receive m packets
successfully. This notion of delay is clearly stronger than the
average delay in the sense that it guarantees the reception of m
packets by all users. This definition of the delay is specially
useful for applications with deadline [16]. Disregarding the
throughput and if the users are back-logged, the minimum
delay of mn can be achieved by round-robin scheduling1.
However, the throughput optimal strategy has to contend
with delay hits. The overriding question in this paper is to

1If the users are not backlogged, there is a chance that the chosen user
has an empty queue. This probability must be taken into account (see Section
3.1)
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characterize the delay for the throughput optimal strategy, e.g.
to determine its mean and other moments. Finally, we propose
an algorithm to reduce the delay at the expense of a little hit in
the throughput of the system. The results in this paper imply
that opportunistic transmission increases the delay by a factor
of log n compared to that of delay optimal strategies.

Previously, the question of the delay-throughput trade off
has been addressed by several authors in different contexts
[15]. In single link systems, the problem of how to optimally
allocate the power among channel uses such that the capacity
is maximized while guaranteeing the delay for sending bits
remains bounded has been considered in [3], [4]. Also, the
trade off between average power and delay has been addressed
by Berry and Gallager for single link systems [5]. In multiuser
channels, traditionally delay and throughput were considered
separately and therefore, access schemes such as ALOHA [6]
were proposed to avoid collisions without exploiting multiuser
diversity. As noted later in [7], [8], there has been a large
body of work to combine the physical layer and multiple
access layer (see [9], [10], [11], [17], [18] and references there
in). For multiple access channels, a decentralized variation
of ALOHA algorithm is proposed that exploits multiuser
diversity [1]. In [19], the authors consider the problem of
characterizing the capacity region under a stability condition
for queues. Stability here is in the sense that the probability
of the queue overflow can be made arbitrary small by making
the buffer size sufficiently large [19].

Scheduling in broadcast channels has been also considered
by several authors [20], [21], [22], [23], [12], [14], [13], [15],
[16]. In [21], stabilizing parallel queues in the transmitter is
considered, where the connectivity of queues are random to
capture deep fades in the wireless channel. In [23], the authors
incorporate the channel state information in their scheduling
while providing delay constraints for packets. Analyzing the
average delay (over the users) can be also done using the
results for the general independent input/output (GI/GI/1)
queues and it can be shown that the average delay is of the
order of the number users [24], [25]. However, in order to
provide delay guarantee for all users, we have to study the
delay for the most unfortunate user in the system. Clearly
the worst case delay is a function of the number of users and
their SNRs (or the probability of being chosen as the best user
at each channel use). While these works give many insights
and algorithms, they leave open the question of how large the
worst case delay is as a function of the number of users and
their SNRs for using throughput optimal strategies. This is the
main goal of this paper.

This paper is organized as follows. Section II introduces
our channel model and our notation. Section III deals with
characterizing the delay for single antenna broadcast fading
channels. Section IV generalizes the results of Section III to
multi-antenna broadcast channels. Finally Section V proposes
an algorithm to reduce the delay at the expense of a little
reduction in the throughput and Section VI concludes the
paper.

II. SYSTEM MODEL AND ASSUMPTIONS

In this paper we consider a single antenna broadcast channel
with n receivers. We assume a block fading channel with

m

m

1

2

n

Fig. 1. n parallel queues in the transmitter corresponding to n users; we
are interested in the behavior of the longest queue.

a coherence interval of T , and where the channel changes
independently after T seconds. The transmission is assumed
to be packet based and the length of each packet is T 2.

For each block of length T , the received signal at the i’th
user at time t can be written as,

yi(t) =
√

ρihi(t)S(t) + ni(t), i = 1, . . . , n, (1)

where hi(t) is the effect of channel and ni(t) is additive white
noise and that both are i.i.d. circularly symmetric complex
Gaussian distributed with zero mean and variance of one. Here
ρi is the SNR of the i’th user and S(t) is the transmitted
symbol at time t. We further assume independent memoryless
channel which implies that the channel changes independently
to another value after the coherence interval of T .

In the transmitter we assume there are n queues correspond-
ing to each receiver and receiver’s messages are independent3.
For most of our analysis, we will assume that there is always a
packet available to be transmitted to any user (i.e., backlogged
users) 4 . Fig. 1 illustrates the arrangement of queues in the
transmitter. In fact, the main challenges for the scheduler
are to first balance the service among all the users and to
second exploit the multiuser diversity in the channel in order
to maximize the throughput of the system. Any scheduling
strategy implies a probability for choosing each user at each
channel use that may depend on the signal to noise ratio (SNR)
of all users, the length of the queue of users, and the statistics
of the channel (see [14], [15], [16]). For the throughput
optimal strategy, this probability only depends on the SNR
of the user and the channel statistics. For i.i.d channels, it
is clear that these probabilities are only functions of users’
SNRs.

Assuming that all packets have C0 information bits for a
homogeneous network (i.e., ρi = ρ), we consider a packet to
be dropped if outage occurs, i.e., if the instantaneous capacity
C goes below C0 at the time of the transmission [26]. The

2If the length of the packet is smaller than T , the results in this paper can
be easily generalized.

3Broadcast channels, in full generality, include transmission of common
messages between receivers. Here we consider the special scenario in which
the transmitter is sending independent messages to the receivers.

4In most practical situations, packets have finite arrival rates and so this
assumption may not be valid. In section 3.1, we show how our result can be
extended to the non-backlogged case.
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instantaneous capacity however depends on the scheduling.
For the round-robin scheduling, C = log(1 + ρ|hi|2) which
does not depend on n. For the throughput optimal strategy 5, C
however is the maximum of log(1 + ρ|hi|2) over 1 ≤ i ≤ n,
i.e., C = max

1≤i≤n
log(1 + ρ|hi|2). We assume if a packet is

dropped, the transmitter will be notified and the packet will
be considered for re-transmission whenever the corresponding
user has the best channel conditions.

If we assume that the error probability is simply the outage
probability (a reasonable assumption for long packets [4]),
we have Pe = Pr(C < C0). The throughput is therefore R =
C0(1 − Pe) = C0Pr(C ≥ C0). Given Pe, any scheduling
would lead to a different C0. Note that for any value of C0,
the throughput optimal strategy is to send to the best user as
this would minimize Pe. Conversely, for any fixed value of
Pe, sending to the strongest user maximizes the throughput as
this would allow for the largest possible C0. It is also worth
mentioning that the maximum of n i.i.d. exponential random
variables (the |hi|2) behaves almost surely as log n. Therefore
for large n, we do not need to use power control to compensate
for the channel variation as the maximization automatically
prevents having deep fades for large number of users with
high probability. Thus, for the throughput optimal scheduling,
it is reasonable to assume that all the packets have the same
amount of information, i.e., C0 roughly about log(1+ρ log n),
independent of the time and channel condition.

In this paper, we define the (packet) delay in the broadcast
channel as the number of channel uses (denoted by Dm,n)
required to guarantee that all the users will receive m packets
successfully. It is clear from the definition of Dm,n that this
notion of delay refers to the worst case delay among users
(or the delay for the most unfortunate user). Of course, Dm,n

is a random variable and depends on the number of users n,
the number of packets m and also the scheduling algorithm. A
delay-optimal strategy is round-robin scheduling which clearly
achieves the optimal (packet) delay of mn (when there is
no error). However, round-robin is not throughput optimal
which requires transmitting to the user with the best channel
conditions at each channel use. Throughput optimal strategies,
on the other hand, will have to contend with delay hits. The
following section deals with the delay for the throughput
optimal scheduling.

It should be also mentioned that our definition of the delay
with backlogged users suffers from the weakness that it does
not account for the queueing delay. However, our delay is a
lower bound for the overall worst case delay in a system with
random arrivals. The lower bound should be also tight when
the system is highly loaded.

III. DELAY ANALYSIS FOR SINGLE-ANTENNA

BROADCAST CHANNELS

Opportunistic transmission is a probabilistic scheduling
which implies that each user will be given service with some
given probability. Assuming that the outage probability Pe is
given, the opportunistic scheduling maximizes the throughput
or equivalently C0 (the amount information bits per packet).

5In this paper, we use the terms opportunistic scheduling and throughput
optimal strategy interchangeably.

Analyzing the average delay (over all the users) can be done
as the queue of each user can be considered as an i.i.d.
input/output queue [24]. In particular, it can be shown that the
average delay is of the order n [25]. However analyzing the
worst case delay (or the delay for the most unfortunate user in
the system) requires considering n parallel queues of n users
all-together [27]. In this section, assuming that at each channel
use the transmitter sends to the i’th user with the probability
pi, which only depends on the SNR of all users, and drops the
packet with probability Pe, we obtain the moment generating
function of the random variable Dm,n.

We first consider the simple case in which the network is
homogeneous and Pe = 0. Then we generalize the result to
the case where we have a non-zero Pe and/or a heterogeneous
network where users are chosen with different probabilities.
We obtain the mean and variance of the delay Dm,n for any m
and n. We further look into the asymptotic behavior of Dm,n

for different regions of m and n at the end of this section.

A. A Study of the Delay for Users with Poisson Arrival

Before delving into an analysis of Dm,n for the backlogged
case, let us remark on the more realistic case where we have
a poisson arrive for the packets with fixed rate λ ≤ 1

n . In this
case, there is a non-zero probability that the user with the best
channel condition has an empty queue. Two courses of action
can be taken: one is to not transmit anything, the other is to
transmit to the user with the best channel condition whose
channel is non-empty. The latter is a more reasonable action,
but seems very difficult to analyze.

In this section, we study the effect of having random arrivals
for each queue and find the delay incurred by the scheduling
in which no transmission is done if the chosen user has no
packet. In order to analyze the delay, we would need to find
the probability of having no packet at each queue in the steady
state.

Each queue has a poisson arrival process with intensity
λ and the service has a binomial distribution, i.e., with
probability 1

n the queue will be served at each time slot.
Therefore the characteristic function for the length of time
that the queue has not been served can be written as,

S(z) =
∞∑

i=1

zi(1 − 1/n)i−11/n =
z/n

1 − z(1 − 1/n)
. (2)

Therefore using known results for the M/G/1 queue, the mo-
ment generating function for the random variable N denoting
the number of packets in the queue can be written as,

GN (z) =
(1 − λ(n − 1))(1 − z)

1 − z
S((1−z)λ)

(3)

where S(z) is as defined in (2). Thus, the probability of having
an empty queue is GN (0) = 1− λ(n − 1). It is worth noting
that in order to have all the n queues in the system to be
stable, λ ≤ 1

n .
Now assuming that the base station will not transmit any

packet if the selected queue is empty, we can easily find the
expected delay using the same trick as we used to analyze the
probability of dropping a packet. In particular, we may assume
that there is a probability of 1 − λ(n − 1) that the packet is
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being dropped. Therefore, the expected delay will be 1
λ(n−1)

times more than the delay for the case of backlogged users.
However if we choose to transmit to the strongest user

with a non-empty queue, then the analysis becomes quite
formidable. The above result, however, is a simple upper
bound for the delay in this case. It is also clear that the delay
for the backlogged system can be served as a lower bound for
the delay in a more realistic setting where users have random
arrivals. In fact upper and lower bounds are tight as the system
becomes highly loaded.

B. Homogeneous Network with No Dropping Probability

When users are homogeneous and assuming throughput
optimal scheduling, the transmitter chooses the i’th user with
probability 1

n from the pool of n users since it is equally likely
for each user to have the best channel condition. The random
variable Dm,n is basically the minimum number of channel
uses to guarantee all n users have been chosen at least m
times.

This problem can be restated as the coupon collector
problem [28] which is studied by several authors in the
mathematics literature (see also chapter 6 of [29]). To be
more precise, users can be seen as people carrying coupons
and the transmitter is the collector that chooses randomly and
uniformly from the n people and collects his/her coupon. The
question is how many times should the collector choose to
guarantee that everybody has given at least m coupons. In
fact we can state the mean value of Dm,n based on a result
found in [30].

Theorem 1. (Newman and Shepp [30]) Consider a homoge-
neous broadcast system with n users. We assume that at each
channel use, the transmitter sends to the user with the best
channel condition. Then, we have,

E(Dm,n) = n

∫ ∞

0

(
1 − (1 − Sm(t)e−t

)n)
dt, (4)

for any m and n where Sm(t) =
∑m−1

k=0
tk

k! .

Proof: Since the network is homogeneous, the probability
of choosing the i’th users is 1

n . Therefore, the problem is the
same as the problem considered by Newman and Shepp [30].
See [30] for the proof.

Inspired by the proof of Theorem 1, we can derive the
moment generating function of Dm,n defined as

F (z) =
∞∑

i=0

ziPr{Dm,n > i} =
∞∑

i=0

zibi. (5)

Using the generating function F (z) in (5), we can obtain all
the moments of Dm,n with a little effort and by taking higher
derivatives of F (z) at z = 1 [31]. For example, using the
definition of F (z) in (5), we can write,

E(Dm,n) = F (1)
σ2(Dm,n) = 2F ′(1) + F (1) − (F (1))2. (6)

Next Theorem obtains F (z) and generalizes the result of
Theorem 1.

Theorem 2. Considering the setting of Theorem 1, we can
write the moment generating function of Dm,n defined in (5)
as,

F (z) =
n

z

∫ ∞

0

e−
n
z t
(
ent − (et − Sm(t))n

)
dt. (7)

Proof: We evaluate F (z) by the same trick as [30] in which
the mean of Dm,n is derived. In fact, F (z) can be evaluated
by noting that bi is the probability of failure in obtaining m
packets at all the n users up to and including the i’th trial.
Therefore, bi is simply the polynomial ( 1

nx1 + . . . + 1
nxn)i

evaluated at x1 = . . . = xn = 1 after excluding all terms
which have all xi’s with exponent larger than m−1. Therefore,
we may write

F (z) =
∞∑

i=0

zi

{
(x1 + . . . + xn)i

}
ni

(8)

where {·} denotes the operator that removes all the terms
which have all xi’s with exponent less than m−1. Considering
the following identities [30],

zii!
ni

=
n

z

∫ ∞

0

e−
n
z ttidt, (9)

{
ex1+...+xn

}
=

∞∑
i=0

{
(x1 + . . . + xn)i

}
i!

= ex1+...+xn −
n∏

i=1

(exi − Sm(xi)) , (10)

where the first equality in Eq. (10) is the definition of the
exponential function and the second equality follows by noting
that the second term in the right hand side just subtracts out
the terms with all xi’s larger than m. We may then replace
the integral form for 1

ni using (9) in (8) to get,

F (z) =

∞�
i=0

� ∞

0

n

z
e−

n
z

ttidt ×
�
(x1 + . . . + xn)i

�
i!

=
n

z

� ∞

0

e−
n
z

t
∞�

i=0

�
(x1 + . . . + xn)i

�
i!

dt

=
n

z

� ∞

0

e−
n
z

t

�
etx1+...+txn −

n�
i=0

�
etxi − Sm(txi)

�	
dt

=
n

z

� ∞

0

e−
n
z

t
�
ent − (et − Sm(t))n

�
dt. (11)

where we replaced xi = 1 for i = 1, . . . , n and we used
(10) to get the second equality and we replaced xi = 1 for
i = 1, . . . , n to obtain the last equation.

It is now quite straightforward to derive the variance of
Dm,n using F (z) and (6) as shown in (12) on the next page.

C. Heterogeneous Network with Dropping Probability

For the special case of a homogeneous network, we derived
the moment generating function of Dm,n in Theorem 2. In
what follows, we generalize the results to a more general
setting in which users may have different SNRs and also
a packet may be dropped if outage occurs. We assume
the transmitter will be notified in case a packet is dropped
and it will be considered for re-transmission whenever the
corresponding user has the best SNR. Here, we assume a
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σ2(Dm,n) = 2n2

∫ ∞

0

t
(
1 − (1 − Sm(t)e−t

)n)
dt − E(Dm,n) − (E(Dm,n))2 (12)
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Fig. 2. Expected delay
E(Dm,n)

n log n
for different values of m and n.

memoryless i.i.d. channel and that the transmitter chooses the
i’th user with probability pi that depends on the SNR of all
users and their channel conditions for the throughput optimal
strategy. Assuming that all the packets have the same length,
the packet for the i’th user is dropped with probability of Pei .

The following Theorem states the mean and variance of
Dm,n for this general setting and for any m and n. The
Theorem is a generalization of the result of Newman and
Shepp [30] stated in Theorem 1.

Theorem 3. Suppose we have n users such that the probability
of choosing the i’th user is pi = αi

n and the probability of
dropping a packet is Pei . Then the moment generating function
for Dm,n defined in (5) is,

F (z) =
n

z

� ∞

0

e−
n
z

t

�
ent − e

�n
i=1 Pei

t
n�

i=1

(etβi − Sm(tβi))

	
dt,

(13)
where βi = (1−Pei )αi. In particular, assuming Sm(t) is as

defined in Theorem 1, we have

E(Dm,n) = n

∫ ∞

0

(
1 −

n∏
i=1

(
1 − Sm(βit)e−βit

))
dt, (14)

and (15) on the next page.

Proof: The proof is a generalization of Theorem 2 and we
omit it for the sake of brevity.

For example, as a simple consequence of (14), we can
obtain the expected delay for the case where n users are
equally likely and that the probability of dropping a packet
is Pe, as

E(Dm,n) =
1

1 − Pe
(n + 1)

∫ ∞

0

(
1 − (1 − Sm(x)e−x

)n)
dx,

(16)
by a simple change of variable in the integral stated in (14).

Fig. 2 shows the expected delay for m = 1, 2, 3, 4 and for
different number of users for a homogeneous network. It is
clear that when n is large and m = 1, the growth in the
expected delay is like n logn. Also Fig. 2 implies that the
expected delay does not grow linearly with m (for small values
of m). In fact it converges to n log n although the convergence
seems to be quite slow. The next subsection deals with the
asymptotic analysis of the delay for different regions of m
and n.

Remark 1: It is worth mentioning that we can consider the
delay in sending mi packets to the i’th user for i = 1, . . . , n.
In particular, considering the setting of Theorem 3, and we
are interested in sending mj packets to the j’th user for j =
1, . . . , i where i ≤ n. Defining m = (m1, . . . , mi) and Dm as
the minimum number of channel uses guarantees the receive
of mj packets at the j’the user for j = 1, . . . , i, we can write
the moment generating function for Dm as shown in (17) on
the next page.

D. Asymptotic Analysis of the Moments of Dm,n

In the previous subsection, we obtained the moments of
Dm,n for a general setting and for any m and n in closed form.
However, it is hard to speculate how the mean and variance
of the delay behave as functions of m and n. In order to get
a better insight into the behavior of the delay, we derive some
asymptotic results for the moments of Dm,n and for different
regions of m and n.

Theorem 4. Assuming a homogeneous network and that a
packet will be dropped with probability Pe,

1) For m fixed and n → ∞, we have (18) and (19) on the
next page. 6

2) For m = log n and n → ∞, we have

E(Dm,n) = α
1

1 − Pe
n log n + O(n log log n). (20)

where α = 3.146 is the solution to the equation α −
log α = 2.

3) For m = (log n)r where r > 1 is fixed and n → ∞,
then

E(Dm,n) =
1

1 − Pe
n(log n)r + o(n(log n)r)

=
1

1 − Pe
mn + o(mn). (21)

4) For n fixed and m → ∞,

E(Dm,n) =
1

1 − Pe
nm + o(m). (22)

Proof: Here we present the sketch of the proof for the first
part and omit the proof for the other cases for the sake of
brevity. The interested reader can refer to [31] for the complete
proofs.

6This case has been also proved in [30], however we present other proof
which leads to results for another regions of m and n as well.
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σ2(Dm,n) = 2n2

∫ ∞

0

t

(
1 −

n∏
i=1

(
1 − Sm(βit)e−βit

))
dt − E(Dm,n) − (E(Dm,n))2 (15)

F (z) =
∞∑

i=0

ziPr(Dm > i) =
n

z

∫ ∞

0

e−
n
z t

(
ent − enPet+

�n
k=i+1 βkt

i∏
p=1

(etβp − Smp(tβp))

)
dt (17)

E(Dm,n) =
1

1 − Pe
n log n + n(m − 1) log log n + o(n log log n) (18)

σ2(Dm,n) = O(n2) (19)

E{ max
1≤i≤n

xi} =
∫ ∞

0

xfmax(x)dx =
∫ ∞

0

(1 − Fmax(x))dx =
∫ ∞

0

(1 − Fn(x))dx (23)

Noting that the expected value of Dm,n is equal to (16), we
first show that the integral in (16) is in fact proportional to
the expected value of the maximum of n i.i.d. χ2(2m) random
variables. To prove that, we assume xi’s for i = 1, . . . , n are
i.i.d. random variables with χ2(2m) distribution. We can then
write the expected value of the maximum of xi’s as shown
in (23) on the next page, where fmax(x) and Fmax(x) are
probability distribution and cumulative distribution functions
(CDF) of the maximum of xi’s and F (x) is the CDF of xi. We
further know that xi’s are i.i.d. and have χ2(2m) distribution
and therefore their CDF is the incomplete gamma function and
can be written as F (x) = 1− Sm(x)e−x. Therefore, we may
write (23) as shown in (24). Therefore to analyze the mean of
Dm,n, we investigate the behavior of the maximum of xi’s.
In [32], it is shown that for m fixed, max

1≤i≤n
xi behaves like

with high probability. This would then lead to the result for
E{Dm,n} for large n and fixed m. See [31] for the precise
argument.

To obtain the variance, we first note that Dm,n ≤ mD1,n

which is clear from the definition of Dm,n. Now we derive
the variance of D1,n and, since m is fixed, the variance of
Dm,n has the same order. Denote by ri, for i = 1, . . . , n, the
number of transmissions after transmitting at least one packet
to i − 1 users and before i users receive their first packet.
Clearly ri’s are independent and have geometric distribution,
i.e., Pr {ri = k} =

(
i−1
n

)k−1 (
1 − i−1

n

)
. The distribution of

ri is obtained by noting that ri equals k if in the last k − 1
trials the packet is transmitted to the i − 1 users that have
already been chosen and then in the k’th channel use, one
user will be transmitted to from the pool of n − i + 1 users
that have already been chosen.

Using the definition of D1,n and ri’s, it is clear that D1,n =∑n
i=1 ri and therefore the variance of D1,n can be written as,

σ2
D1,n

= n2
n∑

i=1

1
i2

− n

n∑
i=1

1
i
. (25)

It is quite straightforward to prove that the first term in the
right hand side of (25) behaves like O(n2) and the second term
behaves like n logn. Therefore the variance of Dm,n can be
written as σ2

Dm,n
≤ m2σ2

D1,n
= O(n2).

In order the prove the other cases, we need to investigate the
behavior of the maximum of n i.i.d. χ2(2m) random variables
when m for large n and when m also grows. We refer the
reader to [31] for the proofs.

Assuming m = 1 and using the result of Theorem 4, we
can state that the delay converges to the mean almost surely
using Chebychev’s inequality as shown in (26) for large n.
This implies that the delay hit for sending the first packet
successfully to all the users is increased from the minimum
of n for the round robin scheduling to n log n for the op-
portunistic transmission for large n. So the delay degradation
due to exploiting the channel variation and maximizing the
throughput of the system is a multiplicative factor of log n. It
would be also interesting to investigate the scaling law of the
variance of Dm,n when m also grow to infinity; this would
then imply the type of convergence to the mean for different
regions of m and n.

Remark 2: For a homogeneous network, as opportunistic
transmission is long term fair (i.e. the probability of choosing
all the users is the same), we know that for sufficiently
large m, the expected delay should behave like mn. This
is confirmed by the fourth part of Theorem 4. Interestingly,
Theorem 4 further implies that if m grows faster than (log n)r

where r is fixed and greater than one the expected delay
behaves like mn. This has implications for the time scale
after which the system behaves fairly. Moreover, if m grows
logarithmically with n, the expected delay is only off by
a constant factor of α = 3.14, compared to the minimum
delay mn. Therefore, our result can be seen as the short term
behavior of the delay for any m.

As mentioned, the largest delay hit is when we focus on
sending a few packets, i.e. m = 1 or m is small. The delay
hit gets less when we focus on sending more and more packets
(i.e., when m gets larger). Therefore, in the rest of the paper,
we mainly focus on the delay for sending the first packet, i.e.
D1,n.

IV. DELAY IN MULTI ANTENNA BROADCAST CHANNELS

Multiple transmit antennas have been shown to signifi-
cantly improve the throughput of a broadcast channel. It is
shown that dirty-paper coding achieves the sum rate capacity
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E(Dm,n) =
n + 1
1 − Pe

E{ max
1≤i≤n

xi} =
n + 1
1 − Pe

∫ ∞

0

(
1 − (1 − Sm(x)e−x)n

)
dx. (24)

Pr
{
|Dm,n − 1

1 − Pe
n log n + O(n log log n)| ≤ n

√
log n

}
≥ 1 − 1

log n
, (26)

of a Gaussian broadcast channel [33], [34], [35]. However,
beamforming has long been proposed as a heuristic method
to mitigate the interference in the transmitter and to send
multiple beams to different users. Although, beamforming is
not optimal in achieving the sum rate capacity, its throughput
does scale the same as that of dirty paper coding for a system
with many users and has much less complexity than that of
dirty paper coding [36], [37].

In this paper, for a system with M transmit antennas, we
assume a simple model in which the base station transmits to
M different receivers at each channel use. This is certainly a
valid model for beamforming or channel inversion, though it
does not fit the dirty paper scheduling in which the transmitter
sends information to all the users at each time. However, as far
as the scaling law of the sum rate throughput is concerned,
when M is either fixed or growing logarithmically with n,
it can be shown that beamforming, channel inversion, and
random beamforming all give the optimal scaling law for the
sum rate throughput [32].

For a homogeneous network, our model for the multiple
antenna transmitter implies that, at each channel use, the
transmitter sends to M different users uniformly chosen from
the pool of n users (see [32]). In this scheduling the transmitter
sends M beams each one is assigned to the user with the
best signal-to-noise and interference ratio (SINR) for the
corresponding beam. As shown in [32], the best SINR behaves
like log n with high probability for large n. Therefore, we may
again assume that each packet carries a fix amount information
(roughly about log(1 + ρ log n)).

This scheduling is certainly more balanced compared to the
case where we have a single antenna system that works M
times faster. This can be justified by noticing the fact that we
exclude the possibility of sending to one user twice (or more)
in each block of M transmissions and hence the scheduling is
more balanced. In particular, assuming that there is no packet
dropped as in Theorem 1. Then, we have,

Dm,n(M) ≤ 1
M

Dm,n (27)

where Dm,n(M) is the delay for sending m packets success-
fully to n users in an M -transmit antenna system and where
Dm,n is the delay for a single antenna broadcast system as in
Theorem 1.

In fact we can compute exactly the expected delay in
transmitting the first packet successfully, i.e. E (D1,n(M)),
for any n and M . Further generalization of the result to m > 1
is non trivial and we have not been able to do this; however,
it is quite easy to show that Dm,n(M) ≤ mD1,n(M). The
next theorem presents the result for m = 1 and for any n and
M .

Theorem 5. Consider a broadcast channel with M transmit

antennas and n users. Assuming that no packet is dropped,
we can write the expected delay in sending one packet to all
users for any m and n as,

E (D1,n(M)) =

∞�
k=0

n�
r=1

n−r�
i=0

(−1)n−r−i

�
n
r

�
�

n
M

�k
�

n − r

i

	�
i

M

	k

.

(28)

Proof: Similar to the proof of Theorem 3, we first note that
the mean of D1,n(M) can be written as,

E (D1,n(M)) =
∞∑

k=0

Pr (D1,n(M) > k) (29)

In order to compute the probability of D1,n > k, we define the
auxiliary random variable μM

n (k) as the number of users that
have received no packets after k channel uses in which the
transmitter sends to M different users. From the definition
of μM

n , it is clear that μM
n ≤ n and that D1,n(M) > k is

equivalent to μM
n (k) > 0. Therefore, Eq. (29) can be written

as,

E (D1,n(M)) =
∞∑

k=0

Pr
(
μM

n (k) > 0
)

=
∞∑

k=0

n∑
r=1

Pr
(
μM

n (k) = r
)

(30)

The probability that μM
n (k) = r can be computed as follows.

Assuming μM
n (k) = r implies that only n − r users have

received at least one packet in k channel uses. We then define
the event Si for i = 0, 1, . . . , n − r as the event that at least
n−r−i users have not received any packets among n−r users
that are supposed to receive a packet. This implies that there
are at most i users that the transmitter sends packets to. It is
clear that for 1 ≤ i ≤ M probability of Si is zero, since the
transmitter certainly can transmit to M different users at each
channel use. For i > M , however we can write the probability
of Si as

Pr {Si} =
(

n

r, i

)( i
M

)k
(

n
M

)k =
(

n

r

)(
n − r

i

)( i
M

)k
(

n
M

)k
i = 0, 1, . . . , n − r. (31)

where we first chose two sets of users with cardinality r and i
from the set of n users and then we distributed packets among
i of them k times by choosing M different users at each time.

Considering the definition of μM
n (k) = r and the Si’s, we

can use the inclusion-exclusion principle (see chapter 4 of
[28]) to obtain (32). Substituting (32) in (30), we can write
the expected delay as (33). This completes the proof for the
Theorem.
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Pr
(
μM

n (k) = r
)

= Pr(Sn−r) − Pr(Sn−r−1) + . . . + Pr(S0)

=
n−r∑
i=0

(−1)n−r−iPr(Si) =

(
n
r

)
(

n
M

)k
n−r∑
i=M

(−1)n−r−i

(
n − r

i

)(
i

M

)k

(32)

E (D1,n(M)) =
∞∑

k=0

Pr
(
μM

n (k) > 0
)

=
∞∑

k=0

n∑
r=1

(
n
r

)
(

n
M

)k
n−r∑
i=M

(−1)n−r−i

(
n − r

i

)(
i

M

)k

(33)

Remark 3: It is worth mentioning that we can also obtain
the generating function F (z) that would lead to the moments
of D1,n(M) for any M and n. In fact, F (z) is equal to

F (z) =

∞�
k=0

zkPr(D1,n(M) > k)

=
∞�

k=0

n�
r=1

n−r�
i=0

(−1)n−r−i zk
�

n
r

�
�

n
M

�k
�

n − r

i

	�
i

M

	k

(34)

Using (6) and (34), we can easily obtain the variance (and
other moments) of D1,n(M).

Although Theorem 5 gives us the exact value of the
expected delay for any number of users, it does not make
clear how much improvement on the delay we can get in
using multi-antenna transmitter over that of the single antenna
system. We can in fact asymptotically analyze the expected
delay derived in Theorem 5 for large number of users to get
a better intuition about this result.

Theorem 6. Consider the setting of Theorem 5. Then the
expected delay in sending at least one packet to all n users
using an M -antenna transmitter derived in (28) behaves like

E (D1,n(M)) =
∑n

k=1
1
k∑M−1

r=0
1

n−r

+ O(1). (35)

for large n and when M grows no faster than log n.

Proof: The proof is quite involved and we omit it due to
lack of space. The interested reader is referred to [31] for the
proof.

For the special case of M = 1, the problem reduces to the
coupon collector problem when m = 1 (one packet). It can be
easily shown that the expected delay is equal to n

∑n
i=1

1
i ≈

n log n. Clearly the result of Theorem 5 confirms this result
for one transmit antenna, i.e. M = 1.

Remark 4: As mentioned in (27), using multiple transmit
antennas in the transmitter should improve the delay. We may
write the improvement on the expected delay by using M
transmit antennas over that of single antenna case as shown in
(36). Eq. (36) implies that when M is not growing faster than
log n, the gain in delay is a factor of M which comes from the
fact that we are transmitting packets M times faster. Therefore,
multiple transmit antenna systems incur pretty much the same
delay as that of a single antenna transmitter that operates M
times faster when there is no channel correlation.

Although the gain on delay in using multiple transmit
antennas is not that much, multiple transmit antennas can
significantly improve the long term fairness in a heterogeneous
network. More precisely, in [32], it is proves that if M grows
logarithmically with the number of users, the probability
of choosing each user become independent of its SNR and
approaches to 1

n . Moreover, when there is channel correlation,
multiple antenna systems can significantly reduce the delay by
“decorrelating in time” the effective channel through means
such as random beamforming [32], [38].

V. TRADING DELAY WITH THE THROUGHPUT:
d-ALGORITHM

Previously, we showed the delay hit in using the optimal
throughput scheduling is a log n fold increase compared to
the minimum achievable delay. In this section, we propose
an algorithm that can reduce the expected delay for sending
the first packet at the price of a little throughput degradation.
The goal is to improve the log n fold degradation in the delay
without too much reducing the throughput of the system.

In order to improve the delay, we have to introduce more
options to the scheduler at each channel use. For single
antenna systems, this can be done by looking at the d best
users in terms of capacity and transmit to the user among those
d users that has received the least number of packets. We call
this scheduling the d-algorithm. For a large number of users
and fixed d, it is quite easy to show that the capacity of the best
user and that of the d’th best user is quite close almost surely.
This in fact guarantees that the throughput degradation using
our algorithm is not that much. The next Theorem quantifies
the performance of the d algorithm precisely.

Theorem 7. Consider the setting of Theorem 1 and suppose
the transmitter uses the d algorithm. We denote the expected
delay in sending the first packet by E(Dd

1,n). Then, for any d,

E(Dd
1,n) = n

∫ 1− d
n

0

1
1 − xd

dx + O(1) (37)

Asymptotically, we can further prove that if d is fixed,

lim
n→∞

E(D1,n(d))
E(D1,n)

= lim
n→∞

E(Dd
1,n)

n logn
=

1
d
. (38)

Proof: In order to compute the expected delay, we again
define the variable ri as the number of channel uses after
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Gain on the expected delay with M antenna transmitter =
1∑M−1

r=0
n

n−r

= M + O

(
M2

n

)
. (36)

sending at least one packet to i−1 users and before completing
the transmission of at least one packet to i users. Clearly ri

has a Geometric distribution as,

Pr(ri = k) = (1 − pi)k−1pi k = 1, 2, . . . (39)

where pi is the probability that all the d best users have been
chosen before, therefore

pi = 0 1 ≤ i ≤ d − 1

pi = 1 −
(

i
d

)(
n
d

) , d ≤ i ≤ n − 1 (40)

Noting that D1,n =
∑n−1

i=0 ri, and also using the fact that the
mean value of ri is 1

pi
, we can obtain the expected value of

D1,n as

E(Dd
1,n) =

n−1∑
i=d

1
pi

=
n−1∑
i=d

1

1 − i(i−1)...(i−d+1)
n(n−1)...(n−d+1)

≤
n−1∑
i=d

1

1 − ( i−d+1
n

)d (41)

where we used a simple upper bound for
(

i
d

)
/
(
n
d

)
. To evaluate

the summation in the right hand side of (41), we may take
integrals from x = 1 to x = n − d + 1 from both sides of

1
1 − (x/n)d

≥ 1
1 − (�x	/n)d

≥ 1
1 − ((x − 1)/n)d

, (42)

to obtain

E(Dd
1,n) = n

∫ 1−d/n

0

dx

1 − xd
+ O(1), (43)

which completes the proof for the first part of the Theorem.
To prove the second part, we define the integral in the right
hand side of (43) as G(n). Then it is quite easy to show that
when d is fixed, we have

lim
n→∞

G(n)
log n

= lim
n→∞

d

n(1 − (1 − d
n )d)

=
1
d
. (44)

where we used the L’Hopital’s rule in (44). Considering that
E(D1,n) scales like n logn as proved in Theorem 4, the
second part of the theorem immediately follows from (44).

Fig. 3 shows the delay improvement for different values
of d and for different number of users. As d increases the
delay improves though with less pace. Clearly, we can get
most of the improvement by just checking the the best two
users (d = 2) and further increasing d will not improve the
expected delay as much as before.

There is of course a price to pay on the rate for the delay
improvement. In order to see the throughput hit, we look into
the ergodic throughput of the channel (denoted by R(d)) using
the d algorithm defined as

R(d) = E log
(

1 + ρ max
1≤i≤n

k|hi|2
)

(45)
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Fig. 3. Expected delay E(Dd
1,n) for different values of d and n.

where maxk denotes the k’th maximum and k is a random
variable uniformly distributed between 1 and d. Using results
on the extreme value theory, it is quite straightforward to show
that,

lim
n→∞R(d) − R(1) = 0, (46)

when d is fixed. The proof is based on the fact that is d is
fixed, the first and the d best user both have SNR of about
logn(see [39], [32]. Eq. (46) implies that in the limit of large
n, the difference of the throughput of the d algorithm and the
maximum throughput converges to zero.

Remark 5: It is worth mentioning that the transmitter
may use a round-robin type scheduling and also exploits the
channel. This can be done by sending to the best user among
n users at the first channel use, and then sending to the best
user among n− 1 users that have not been chosen and so on.
This method can make sure that the worst case delay is equal
to n. The ergodic throughput of this scheme can be written
as,

RRR = E

{
1
n

n∑
k=1

log
(

1 + ρ max
1≤i≤k

|hi|2
)}

(47)

Assuming that the channel is Rayleigh fading, we can show
that in the limit the ratio of RRR over R(1) is one. Of course,
the convergence in (46) for d-algorithm holds in a stronger
sense. Moreover, it is worth mentioning that this scheduling
may require packets with different amount of information.

Remark 6: Another approach to trade the delay with
throughput is to consider a threshold for the capacity and
to send to the user that has received the least number of
packets among the users with instantaneous capacity above
the threshold value (CTh). In this case, we basically have a
random d that has a binomial distribution where the binomial
parameter q depends on the threshold value CTh. We can in
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fact bound the delay for sending one packet to all users using
d algorithm as,

E(D1,n) = Ed{E{D1,n|d}} ≤ Ed

{
n−d+1∑

l=1

1

1 − ( l−1
n

)d
}

.

(48)
where d has binomial distribution with parameter q =
Pr{log(1 + ρi|hi|2) ≥ CTh}.

VI. CONCLUSION

Providing quality of service (QoS) and also maximizing
the throughput in a cellular system are the main challenges
that require designing the physical layer and multiple access
layer together. In this paper, we consider the downlink of a
cellular system (i.e., a broadcast channel) and we also consider
a notion of worst case delay which is defined as the delay
Dm,n incurred in receiving m packets by all the n users in
the system. Clearly this definition of the delay is stronger than
the average delay and represents the worst case delay among
the users. In order to maximize the throughput, the transmitter
has to send a packet to the user with the best channel condition
which increases the delay. The main goal of this paper is to
analyze this delay increase.

Assuming a block fading i.i.d. channel and a single antenna
broadcast system with n backlogged users, we derive the
moment generating function of the delay for any m and n and
for a general hetereogeouns network where a packet can be
dropped if outage capacity occurs. We further discuss how our
results can be extended to the non-backlogged case. Asymp-
totically, for a homogeneous network where the throughput
optimal scheduling is long-term fair (i.e., the probability of
choosing users are equal), the result implies that the average
delay in sending one packet to all users behaves like n log n
as opposed to n for a round robin scheduling. We also prove
that when m grows like (log n)r, for some r > 1, then to the
first order the delay scales as mn. This roughly determines
the time-scale required for the system to behave fairly. We
also look into the delay analysis for a system equipped with
multiple transmit antennas. Finally we propose an algorithm
that without sacrificing too much on the throughput can sig-
nificantly improve the delay. The algorithm always considers
the first d user with the best channel conditions and transmits
to the one that has received the least number of packets.

There are still questions remain to be answered. For exam-
ple, in the model we considered, all the users always have
packets of equal size for transmission, it would be quite
interesting to generalize the results to the case where each
user have a random rate of arrival or different transmission
rates and analyze the behavior of the length of the longest
queue among n users.

REFERENCES

[1] X. Qin and R. Berry, “Exploiting multiuser diversity for medium access
control in wireless networks,” in Proc. of INFOCOM 2003, pp. 1084–
1094.

[2] S. Shamai and E. Telatar, “Some information theoretic aspects of
decentralized power control in multiple access fading channels,” in
Proc. Information Theory and Networking Workshop 1999.

[3] I. Bettesh and S. Shamai, “Optimal power and rate control for fading
channels,” in Proc. Veh. Tech. Conf. 2001, pp. 1063–1067.

[4] G. Caire, G. Taricco, and E. Biglieri, “Optimum power allocation over
fading channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1468–
1489, July 1999.

[5] R. A. Berry and R. G. Gallager, “Communication over fading channels
with delay constraints,” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp.
1135–1149, May 2002.

[6] N. Abramson, “The ALOHA systems-another alternative for computer
communications,” in Proc. Fall Joint Comput. Conf. 1970, pp. 281–285.

[7] R. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Inf.
Theory, vol. 31, no. 3, pp. 124–142, Mar. 1985.

[8] A. Ephremides and B. Hajek, “Information theory and communication
networks: an unconsummated union,” IEEE Trans. Inf. Theory, vol. 44,
no. 10, pp. 2416–2434, Oct. 1998.

[9] D. N. Tse and S. V. Hanly, “Multiaccess fading channels. I. polymatroid
structure, optimal resource allocation and throughput capacities,” IEEE
Trans. Inf. Theory, vol. 44, no. 7, pp. 2796–2815, Nov. 1998.

[10] L. Tong, V. Naware, and P. Venkitasubramaniam, “Signal processing
in random access: a cross layer perspective,” IEEE Signal Processing
Mag., July 2004.

[11] M. J. Neely and E. Modiano, “Dynamic power allocation and routing
of time-varying wireless networks,” IEEE J. Sel. Areas Commun., vol.
23, no. 1, Jan. 2005.

[12] A. Ganti, E. Modiano, and J. Tsitsiklis, “Optimal transmission schedul-
ing in symmetric communication models with intermittent connectivity,”
available at http://web.mit.edu/jnt/www/publ.html, 2004.

[13] A. Eryilmaz and R. Srikant, “Scheduling with Quality of Service
Constraint over Rayleigh Fading Channels,” in Proc. IEEE Conference
on Decision and Control 2003, pp. 245–250.

[14] A. Stoylar and K. Ramanan, “Largest weighted delay first scheduling:
large deviations and optimality,” Annals Applied Probability, no. 11,
pp. 1–48, Nov. 2001.

[15] S. Borst, “User level performance of channel aware scheduling algo-
rithms in wireless data networks,” in Proc. INFOCOM 2003.

[16] M. Agrawal and A. Puri, “Base station scheduling of requests with fixed
deadlines,” in Proc. INFOCOM 2002.

[17] S. Kumar and P. R. Kumar, “Performance bounds for queueing networks
and scheduling policies,” IEEE Trans. Auto. Control, vol. 39, no. 9, Aug.
1994.

[18] P. R. Kumar and S. Meyn, “Stability of queueing networks and
scheduling policies,” IEEE Trans. Auto. Control, vol. 40, no. 2, Feb.
1995.

[19] E. Yeh and A. S. Cohen, “Throughput and delay optimal resource
allocation in multiaccess fading channels,” in Proc. IEEE ISIT 2003,
pp. 245–245.

[20] J. I. Capetanakis, “Tree algorithms for packet broadcast channels,” IEEE
Trans. Inf. Theory, vol. 25, no. 9, pp. 505–515, Sept. 1979.

[21] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, Mar. 1993.

[22] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for
broadcast channels,” in Proc. IEEE Inter. Symp. Info., July 2002, p. 382.

[23] M. Andrew, K. Kumaran, K. Ramanan, A. Stoylar, P. Whiting, and
R. Vijaykumar, “Providing quality of service over a shared wireless
link,” IEEE Commun. Mag., vol. 39, no. 2, pp. 246–251, Feb. 2001.

[24] J. F. Kingman, “Inequalities in the theory of queues,” J. Royal Statistical
Society: Series B, vol. 32, no. 1, pp. 102–110, Jan. 1970.

[25] M. J. Ferguson, “On the control. stability, and waiting time in a slotted
ALOHA random access system,” IEEE Trans. Commun., vol. 23, no.
10, Oct. 1975.

[26] L. H. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic
considerations for cellular mobile radio,” IEEE Trans. Veh. Technol.,
vol. 43, no. 2, pp. 359–378, May 1994.

[27] A. Ephremides and R. Zhu, “Delay analysis of interacting queues with
an approximate model,” IEEE Trans. Commun., vol. 35, no. 2, Feb.
1987.

[28] W. Feller, An Introduction to Probability Theory and its Applications.
John Wiley and Sons, Inc., 1967.

[29] N. L. Johnson and S. Kotz, Urn Models and Their Application. John
Wiley and Sons, Inc., 1977.

[30] D. J. Newman and L. Shepp, “The double dixie cup problem,” Amer.
Math. Monthly, vol. 67, no. 1, pp. 58–61, Jan. 1960.

[31] M. Sharif and B. Hassibi, “Delay analysis of throughput optimal
scheduling in broadcast fading channels,” Technical Report, Cali-
fornia Institute of Technology, available at www.its.caltech.edu/ ma-
soud/delaybc.pdf, 2004.

[32] M. Sharif and B. Hassibi, “On the capacity of MIMO BC channel with
partial side information,” IEEE Trans. Inf. Theory, no. 2, pp. 506–523,
Feb. 2005.



SHARIF and HASSIBI: DELAY CONSIDERATIONS FOR OPPORTUNISTIC SCHEDULING IN BROADCAST FADING CHANNELS 3363

[33] P. Viswanath and D. N. Tse, “Sum capacity of the vector Gaussian
broadcast channel and downlink-uplink duality,” IEEE Trans. Inf.
Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.

[34] G. Caire and S. Shamai, “On the achievable throughput of a multi-
antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49,
no. 7, pp. 1691–1706, July 2003.

[35] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates
and sum rate capacity of Gaussian MIMO broadcast channle,” submitted
to IEEE Trans. Inf. Theory, 2002.

[36] M. Sharif and B. Hassibi, “A comparison of time-sharing, DPC, and
beamforming for MIMO broadcast channels with many users,” in Proc.
International Symp. on Information Theory 2004.

[37] Y. Xie and C. Georghiades, “Some results on the sum rate capacity of
MIMO fading broadcast channel,” in Proc. Inter. Symp. in Advances in
Wireless Commun. 2002.

[38] P. Viswanath, D. N. Tse, and R. Laroia, “Opportunistic beamforming
using dump antennas,” IEEE Trans. Inf. Theory, vol. 48, no. 6, pp.
1277–1294, June 2002.

[39] M. R. Leadbetter, “Extreme value theory under weak mixing condi-
tions,” Studies in Probability Theory, MAA Studies in MAthematics, pp.
46–110, 1978.

Masoud Sharif received his Ph.D. in Electrical En-
gineering (2005) from California Institute of Tech-
nology. In 2005, he was a post-doctoral scholar
in the EE department at Caltech. Since January
2006, he has been an assistant Professor at Boston
University. Dr. Sharif was awarded the C.H. Wilts
Prize in 2006 for best doctoral thesis in Electrical
Engineering at Caltech. He is a member of the
Center for Information and Systems Engineering at
Boston University. His research interests include ad-
hoc and sensor networks, multiple-user multiple-

antenna communication channels, cross-layer design for wireless networks,
and multi-user information theory. His recent research has focused on col-
laborative communication scheme in ad-hoc and sensor networks and the
capacity of multiple antenna broadcast channels.

Babak Hassibi was born in Tehran, Iran, in 1967.
He received the B.S. degree from the University of
Tehran in 1989, and the M.S. and Ph.D. degrees
from Stanford University in 1993 and 1996, respec-
tively, all in electrical engineering. From October
1996 to October 1998 he was a research associate
at the Information Systems Laboratory, Stanford
University, and from November 1998 to December
2000 he was a Member of the Technical Staff in
the Mathematical Sciences Research Center at Bell
Laboratories, Murray Hill, NJ. Since January 2001

he has been with the department of electrical engineering at the California
Institute of Technology, Pasadena, CA., where he is currently an associate pro-
fessor. He has also held short-tem appointments at Ricoh California Research
Center, the Indian Institute of Science, and Linkoping University, Sweden.
His research interests include wireless communications, robust estimation and
control, adaptive signal processing and linear algebra. He is the coauthor of
the books Indefinite Quadratic Estimation and Control: A Unified Approach
to H2 and H1 Theories (New York: SIAM, 1999) and Linear Estimation
(Englewood Cliffs, NJ: Prentice Hall, 2000). He is a recipient of an Alborz
Foundation Fellowship, the 1999 O. Hugo Schuck best paper award of the
American Automatic Control Council, the 2002 National Science Foundation
Career Award, the 2002 Okawa Foundation Research Grant for Information
and Telecommunications, the 2003 David and Lucille Packard Fellowship
for Science and Engineering and the 2003 Presidential Early Career Award
for Scientists and Engineers (PECASE). He has been a Guest Editor for
the IEEE Transactions on Information Theory special issue on “space-time
transmission, reception, coding and signal processing,” was an Associate
Editor for Communications of the IEEE Transactions on Information Theory
during 2004-2006, and is currently an Editor for the journal Foundations and
Trends in Information and Communication.


