
Motivation

Side information is data available within the network, which is correlated
with the main source we wish to transmit. Side information can
significantly reduce the rates required throughout the network.

The model is interesting in cases where:
1 Not enough capacity from the source.
2 Side information is “close” or “less expensive”.
3 Collaborative networks (sensor, organizational, army).

Problem Statement

Network is modeled as a directed acyclic graph.

One source node, one side information node, possibly several
terminals requiring the source (with arbitrarily small error).

Data processing is allowed at all nodes.

How much data do we have to send?

Goal: compute the amount of data required - the Rate Region

For a network with nodes V, edges E , source at s ∈ V, side information at
z ∈ V and terminals T ⊂ V, characterize R(V, E , s, z ,T ) ⊆ R

|E|: the set
of achievable rates.

Converse:

What are the minimal link
capacities required?

Achievability:

Which X descriptions to create?

Which Y descriptions to create?

How to decode X?

Complexity:

What are the required
operations at the nodes?

Related Work

Ahlswede et al. 00: Network
information flow. Coding: Li et
al. Ho et al. 03 (linear,
random); Koetter & Medard 03
(algebraic); Jaggi et al. 05
(polynomial time).

Ho et al. 05: correlated sources

Bakshi & Effros 08: multicast
with side information at the
Terminals

Ahlswede & Korner 75: Coded
side information

Cut Sets

The majority of network coding related work is on cases where the cut-set
bounds are tight!

Generalizing Point-to-Point Networks and Beyond

Shannon 48:

Ford-Fulkerson 56:

So we can easily also do:

Yet, this generalization of point-to-point is
sub-optimal in general.
Example 1: one terminal

Example 2: more than one terminal

But we know how to solve more than
point-to-point networks!

Characterizing the Smallest Required Rates (Outer Bound)

EXY ⊆ E denotes the set of edges for which there is
a directed path from s to o(e). EY denotes the set
E \ EXY . Given any non-intersecting sets A,B ⊂ V,
VA;B denotes a cut with A ⊆ VA;B and
B ∩ VA;B = ∅. Let C(VA;B) be the set of edges
e ∈ E for which o(e) ∈ VA;B and d(e) �∈ VA;B .

Theorem

Given a side information network (V, E , s, z ,T ), if
(c(e) : e ∈ E) ∈ R(V, E , s, z ,T ), then for each t ∈ T and each cut Vs,z ;t

there exists a random variable U ∈ U such that U ↔ Y ↔ X, |U| ≤ |Y|,
and

∑

e∈EXY ∩C(Vs,z;t)

c(e) ≥ H(X |U)

∑

e∈EY ∩C(Vs,z;t)

c(e) ≥ I (Y ;U).

Comparison to the Cut-Set Bound

The cut-set bound is:

∑

e∈C(Vs,z;t)

c(e) ≥ H(X ),

while the new bound gives

∑

e∈C(Vs,z;t)

c(e) ≥ H(X |U)+I (Y ;U).

The cut-set bound is:

∑

e∈C(Vs;z,t)

c(e) ≥ H(X |Y ),

while the new bound gives

∑

e∈C(Vs;z,t)

c(e) ≥
∑

e∈EXY ∩C(Ṽs,z;t)

c(e)

≥ H(X |U).

Tightness

Since U ↔ Y ↔ X , the new bound is at least as tight as the cut-set
bound.

Two Sinks - Arbitrary Network from Y

Theorem

Assume both X and Y are binary symmetric. The outer
bound is tight for the “Y ” network, and
(c(e) : e ∈ E) ∈ R(V, E , s, z , {t1, t2}) iff ∃ U1 ∈ U1 and
U2 ∈ U2 such that U1 ↔ Y ↔ X, U2 ↔ Y ↔ X, |U1| ≤ |Y|,
|U2| ≤ |Y|, and

X

e∈C(V∗
s;t1

)

c(e) ≥ H(X |U1)

X

e∈C(V∗
z ;t1

)

c(e) ≥ I (Y ;U1)

X

e∈C(V∗
s;t2

)

c(e) ≥ H(X |U2)

X

e∈C(V∗
z ;t2

)

c(e) ≥ I (Y ;U2)

Cut-sets

Cut-set bounds are loose, but the new generalization is tight!

Multi-Resolution codes are Necessary

A source may have a high rate to
one terminal and a low rate to the
other.

As a result, two descriptions may be
required.

Multi-resolution codes:

Each point represents a
sequence in {0, 1}n.

R = log(# of regions).

Ideally, the high rate
description refines the
coarse one.

K Sinks with Direct Links from Y - Result

Theorem

(c(e) : e ∈ E) ∈
R(V, E , s, z , {ti}K

i=1) iff for any
1 ≤ i ≤ K there exist Ui ∈ Ui such
that Ui ↔ Y ↔ X, |Ui | ≤ |Y| and

∑

e∈C(V∗
s;ti

)

c(e) ≥ H(X |Ui )

c((z , ti )) ≥ I (Y ;Ui )

The main idea: randomly bin the source sequences

Each node sends as much independent equations on the bin index as it can.

Routing is sub-optimal

To send the two descriptions (at the lowest possible rates) we must use
network coding.

Proof Sketch - random binning and independent equations

The figure below represents binning to 8 bins and its binary representation:

The bin we received is not the one we “intended” to send, but:

1 It has the correct size.
2 It contains the true xn.
3 It is just as random.

The power of random binning

We can refine the random binning without having a true incremental
multicast network code.

Conclusion

We derived inner and outer bounds on the rate region, and identified
scenarios in which they are tight.

The outer bound is at least as tight as the cut-set, and tighter in
most non-trivial cases.

While the cut-set bounds are loose, we extended the range of
scenarios for which cut analysis describes the rate region.

Our methods inherit the desirable properties of the building blocks.

We identified an interesting connection between coding for networks
with side information and successive refinement.

In fact, this method might yield interesting results for other source
coding problems as well. In a sense, this is a way to rigorously
formulate the intuition from canonical problems to larger networks.

On Networks with Side Information
A. Cohen, S. Avestimehr and M. Effros
California Institute of Technology


