Formal Verification of Distributed Algorithms

K. Mani Chandy¹ Brian Go¹ Sayan Mitra² Jerome White¹

¹California Institute of Technology
²University of Illinois at Urbana-Champaign

Overview

- Improve distributed software reliability
- Ease proof burden for concrete algorithms
- Stepwise refinement and program transformation
- Organize library of theorems for distributed systems (PVS)
- Transform theorem proven code into executable code (Java/Erlang)
- Improve teaching

Abstractions

Incorporate fundamental abstractions of distributed algorithms that are generic enough to be applicable to a large class of problems

Fundamental Functions

- Binary operator \(\circ : T \to T \)
- Composition function \(f : S, \{ K \subseteq S \}, \circ \to T \)
- Transition Predicate \(t : S, S \to \text{Bool} \)

Correctness Properties

- Safety: invariant function with respect to start state \(t(S^0, S) \Rightarrow f(S, \{ K \subseteq S \}, \circ) = f(S^0, \{ K = S \}, \circ) \)
- Progress: variant function to a well founded set \(\rho : T \to T | T \text{ is well founded} \)

Application: Consensus

Abstractions

- Given state \(S \) with \(n \) agents, want final state to be function of start state \(S^* : V \in S : S^*(v) = f(S) \)
- \(\circ \) commutative \& associative \& (idempotent \& super idempotent)
- fold \((f) \) is aggregation \((\text{fold}) \) of composable binary operator
- \(f \) is a depth first graph traversal method

Visual Transition

- \(S \)
- \(a, b, c, d \)
- \(S^0 \)
- \(S' \)
- \(S^0 \Rightarrow f(S) = f(S') \)
- \(a' \), \(b' \), \(c' \), \(d' \)
- \(\circ \)

Object Refinement

- \(\circ (S, S) \to T \)
- \(\text{fold}(S, J, \circ) \to T \)
- \(\text{FoldableOperator} \)
- \(\min / \max \), \(\text{gcd/lcm} \), \(\text{average} \), \(\text{convex hull} \)

Proof Refinement

- \(\circ (S, S) \to T \)
- \(\text{fold}(S, J, \circ) \to T \)
- \(\text{commutative, associative} \)

Application: Graphs

Abstractions

- Given source graph \(G \) and root vertex \(R \), produce target graph that solves given algebraic path problem
- \(\circ \) is semiring with additional constraints
- \(\circ : S^0 \to S' \)
- \((G, \oplus, \otimes, 0, 1) \)

Visual Transition

- \((\{ P \}, \oplus, \otimes, 0, 1) \)

Object Refinement

- \(\circ (\{ P \}, \oplus, \otimes, 0, 1) \to T \)
- \(\text{GraphTraverser} \)
- \(\text{Reachability} \)
- \(\text{ShortestPath} \)

Proof Refinement

- \(\circ (\{ P \}, \oplus, \otimes, 0, 1) \to T \)
- \(\text{reachability} \)
- \(\text{shortest path} \)

References
