Overview

Shortest Remaining Processing Time (SRPT) has long been known to optimize the queue length distribution and the mean response time. As such, it has been the focus of a wide body of analysis. But most results are very complex. For example, in an M/GI/1:

\[
E[T_{SRPT}] = \int_0^1 \left(\int_0^x \frac{dt}{1-\rho(t)} + \frac{\lambda}{1-\rho(x)} \int_0^x tF(t)dt \right) dF(x) \text{ where } \rho(x) = \lambda \int_0^x t f(t)dt
\]

Numerical evaluation is harder than simulation.

Goal

Simple approximation for SRPT

Approach

In order to get a simpler formula:

- We look at heavy-traffic regime.
- Approximate SRPT by Preemptive Shortest Job First (PSJF).

\[
E[T_{SRPT}] \leq E[T_{PSJF}] \leq \frac{3}{2} E[T_{SRPT}]
\]

- Change the measure:

\[
G(x) = \rho(x)/\rho = \int_0^x t f(x)/E[X]
\]

- Assume \(\lim_{x \to \infty} x h_F(x) \) exists (finite or infinite), \(h_F(x) = f(x)/F(x) \).

Theorem. For M/GI/1, the mean response time as \(\rho \to 1 \) is

\[
E[T_{SRPT}] = \begin{cases} \log \frac{1}{1-\rho} & F(x) \text{ has inbounded support and } 1 < \lim_{x \to \infty} x h_F(x) < 2 \\ \left(\frac{1}{1-\rho} \right) & F(x) \text{ has bounded support} \\ \left(\frac{1}{1-\rho} \right) & F(x) \text{ has bounded support} \end{cases}
\]

Remarks:

1) Heavy-traffic behavior depends only on the tail of the job sizes.
2) SPRT has better performance when the job size tail is heavier.
3) SRPT has much better performance than PS/FCFS, which have \(E[T] = \Theta \left(\frac{1}{1-\rho} \right) \).

Applications

Having this simple approximation allows the study of SRPT in more complex models. Currently we are working on two applications.

Load Balancing Design

Power Management

Support provided by: The Lee Center for Advanced Networking, NSF, and Microsoft Research