


Applications in Biosensing

• Opens the door for single molecule, label free detection of bio-molecules, 
using high frequency silicon systems.
•Tested with real DNA samples and highest sensitivity.
•Will serve as a faster, cheaper, smaller, and much more sensitive 
replacement for existing DNA and protein microarrays
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Circuit Model of the EM Problem1
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1 A. Babakhani, D. B. Rutledge, and A. Hajimiri, “Transmitter Architectures Based on Near-Field Direct Antenna Modulation (NFDAM),” in 
IEEE J. Solid-State Circuits, Dec. 2008.
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 No need to run an EM simulation for each iteration

 A simple MATLAB program can be used to sweep the elements of the matrix     
and calculate

 20 variables, 2 discrete values for each one: 220 ~106 iterations in MATLAB
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 Find      such that:

 For practical reasons and to avoid oscillation problems, a passivity constraint is 
imposed on the termination matrix

 is a positive definite matrix:  

The Reverse Problem
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 Find     such that:

Defining the Optimization Problem
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 Equations:

 Passivity condition:

 is a positive definite matrix: 0)~Re( TY)~Re( TY

TY~



 A conducting ground plane is placed 10µm (λ/150) above the transmitter to block 
the signal and reduce the radiation efficiency by almost shorting the antenna

 A passive termination network maximizes the received power by manipulating the 
electromagnetic properties of a patch array

 All-short terminations: Pr / Pt=1.45  10-5, Radiation Efficiency=2.12%

 All-open terminations: Pr / Pt=8.37  10-6, Radiation Efficiency=2.03%

 Optimum network: Pr / Pt=4.23  10-4, Radiation Efficiency=41.85%

 Required time for finding the optimum solution: 8.5 seconds (2.3GHz quad-core)
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Solving a Non-Trivial Radiation Problem
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Optimum
Peak Directivity=9.38dB

Efficiency=41.85%

Open
Peak Directivity=6.19dB

Efficiency=2.03%

Short
Peak Directivity=7.75dB

Efficiency=2.12%

Radiation Pattern
Directivity    Radiation Efficiency (dB)

on φ=90º (Y-Z plane)
×

 The convex optimization algorithm finds a passive termination matrix that maximizes the 
received power

 The radiation efficiency of the optimum solution is 41.85%. This is around 2% for the all-
short or all-open terminations

 The optimum solution improves Directivity   Efficiency by a factor of 29

 Optimum solution causes a strong near-field resonance between the antenna and the 
reconfigurable surface
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